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Abstract. The theory of Davydov solitons for the energy transport in proteins is briefly 
summarised, using for the dynamics of the solitons the quantum equations of motion. To 
obtain a more realistic model for the internal thermal motion of the protein lattice, a 
temperature of 300 K is considered. Since the 20 natural amino acids have different masses, 
disorder in the mass sequence is discussed. The soliton remains remarkably stable against 
thermal motions as well as against mass variation at one site. Also, a random sequence of 
masses destroys the soliton only for a very large deviation from the average mass. 

1. Introduction 

In the last few years it has been discovered that non-linearity in the forces occurring in 
physical systems plays a decisive role in the explanation of a large variety of phenomena. 
First of all it was found that a lattice bound only by linearforces, i.e. harmonic potentials, 
would have an infinite heat conductivity, and that only the introduction of non-linearity 
leads to a finite value of this quantity [l]. Perhaps the most interesting feature of non- 
linear dynamics is the existence of soliton solutions. 

A soliton was first observed in the form of a non-dispersive localised wave packet in 
a channel [2]. (Since linear wave packets disperse rather quickly, solitary solutions are 
an exclusive feature of non-linear wave equations.) Since then, soliton concepts have 
been invoked for the explanation of many phenomena in physics and chemistry. In this 
paper we only want to mention some of them briefly. One type of equation exhibiting 
solitary solutions is the sine-Gordon equation. It has been applied e.g. to the dynamics 
of ferro- and antiferro-magnetic materials [3,4] and rotations around carbon-carbon 
bonds in polyethylene [ 5 ] .  

A solitary solution may also be obtained for double-well potentials of the q4-type, 
and these have been used to treat e.g. phase changes [6,7] and the dynamics of the 
sugar-phosphate backbone of DNA [8]. The spinless charge-transport in lightly doped 
alternating transpolyacetylene can be related to solitons in a q4-type potential that occur 
in a tight-binding or Huckel-type Hamiltonian of the n-electrons [9 ] .  After a series 
of calculations have demonstrated the necessity of introduction of explicit electron- 
electron interactions into the model to obtain satisfactory agreement with certain exper- 
iments (see [lo] and references therein), dynamical calculations have shown that in this 
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case also solitons exist [ 111. Recently, a model invoking conformational solitons in 
nucleotide-base stacks for the explanation of long-range effects of carcinogens was 
formulated [ 121 and studied numerically [ 131. The Davydov soliton discussed in this work 
was introduced to explain another biological problem, namely, that many biological 
processes are associated with an energy transfer through proteins. The energy is released 
by hydrolysis of adenosine triphosphate (ATP). The mechanism of this energy transport 
is not quite clear [ 141. 

As an alternative to electronic mechanisms [14], it has also been supposed that the 
energy is stored as vibrational energy in the isolated C-0 stretching mode of the proteins. 
However, in linear models an initially localised vibrational-energy quantum would be 
rapidly dispersed. On the other hand, if one, following Davydov's idea [15], takes into 
account the coupling between the C-0 vibration and longitudinal sound waves in the 
lattice, non-linear terms appear in the equations of motion. Thus the creation of solitary 
waves in the system is possible. Since solitary waves are highly mobile and localised, 
because dispersive effects are counterbalanced by the non-linear ones, these waves 
would provide an efficient mechanism for storage and transport of energy in proteins. 
Direct experimental evidence for the existence of such solitons in proteins is (due to the 
enormous difficulties of such measurements in complex systems as proteins) still missing. 
However, in acetanilide crystals a substructure with chains of hydrogen bonds similar 
to proteins is present, and in low-temperature infrared and Raman spectra a new band 
in the energy region of the C-0 stretching vibration appears. The only successful theory 
to date for the explanation of this band is based on a model similar to the Davydov 
soliton concept in proteins, while all other-more conventional-attempts have failed 

In this paper, we present quantum-molecular dynamical studies on solitons in an 
a-helix, applying Davydov's model. We consider coupling to a heat bath and aperiodicity 
in the sequence of masses in the chain. In $ 2  the model is briefly discussed and a short 
review of previous work by other groups on the topic given. In § 3 the results we have 
obtained are discussed and finally in Q 4 a short summary is given. 

[161. 

2. Method 

For our studies we use the most simple form of the Hamiltonian for the Davydov system 
[15] since more sophisticated forms incorporating details of the helical structure of 
proteins lead, qualitatively, to the same results [17]: 

In this Hamiltonian b; and bn are the usual boson creation and annihilation operators 
respectively [18] for the amide I oscillators at site n (see figure 1). For their ground-state 
energy E~ and the dipole-dipole coupling constant of two neighbouring CO groups, 

eVcanbededucedfrominfraredspectra[19]. Second 
neighbours' interactions between CO oscillators are an order of magnitude smaller 
and can be neglected [17]. Between the lattice units a harmonic potential due to the 
C=O , , . H-N hydrogen bonds is assumed with a force constant W.pn is the momentum 

= 0.205 eVandJ  = 9.67 X 
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k-I k k +  1 
Figure 1. Sketch of the hydrogen-bonded system of energy transport in proteins (a )  around 
the cu-helix, ( b )  idealised. 

and qn the position operator of unit n. For the mass M ,  of a unit, an average value of 
114 amu (atomic mass units) is usually assumed, corresponding to myosine [17]. For W 
a value of 76 N m-l is taken [20]. From infrared spectra it is known that the energy of 
the CO stretching vibration in hydrogen bonds is a function of the length of the hydrogen 
bond [21]. The experimental vibrational energy plotted against the length r of the 
hydrogen bonds for different systems shows a linear dependence 

E = E,, + Xr. (2) 
The experimental value of x is 6 X lo-" N (see [19] and references therein). Previous 
ab initio calculations on formamide dimer lead to x = 3-5 x lo-" N [22], Our Hartree- 
Fock calculations on formamide dimer using a split-valence basis set with polarisation 
functions ( p  type on hydrogen, d type on heavy atoms) also resulted in x = 6 x lo-" N. 

With the Hamiltonian described above the time-dependent Schrodinger equation 

W V )  = ih(a/at)lvl> (3) 
has to be solved approximately. In most of the previous studies performed on equation 
(3), the displaced oscillator state ansatz [15] of Davydov 

was applied, where the coefficients a,(t) are complex numbers. In this ansatz qn(t) is the 
expectation value of the position operator,p,(t) that of the momentum operator of the 
lattice unit n,  10) is the vacuum state, and lan(t)I2 is the probability of finding an amide I 
vibrational quantum at site n provided that 2,la,I2 = 1. 

However, in their recent work Brown and co-workers have shown [23,24] that in 
the transportless case ( J  = 0) the ansatz (4) leads to the correct time evolution of qn(t) 
but to an incorrect value of the phonon energy. The more sophisticated second ansatz 
of Davydov [15] is even shown to lead to incorrect qn(t) .  Note that for J = 0 the 
Hamiltonian can be solved exactly [23]. 

Brown and co-workers [24] have derived a non-linear density-matrix equation of 
motion. However, this rather complicated theory was, at least to our knowledge, only 
applied in linearised form to a two-site system [25]. Using a time-dependent unitary 
transformation method on the Davydov Hamiltonian, Mechtly and Shaw [26] were able 
to derive equations of motion that are exact in the transportless limit (J = 0). Their 
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numerical simulations show results qualitatively similar to previous calculations [17] 
using ansatz (4). However, soliton formation starts at a higher threshold value of x 
(xl = 10 x 10-l' N) than in simulations using ansatz (4) (xi  = 4 x lo-" N) [ 171. We used 
x = 9 X lo-" N. 

If, therefore, one is mainly interested in the qualitative features of the soliton 
dynamics, it would seem to be justified to use ansatz (4), which also leads to equations 
of motion which are computationally much simpler. The equations of motion derived 
from ansatz (4) are 

if% = wn - J(a,+, + a n - l )  + x(qn  - qn- l )  

Mn4n = w q n + ,  - 2qn + 4n-1) + X(/an+l l 2  - M2). 
(5) 

(5b) 
These equations can be obtained by using the expectation value of H as a classical 
Hamiltonian function [15,17] or also, as recently shown, by quantum mechanical 
methods [27]. 

Finally the total energy of the system is given by 

E = (rlHlr) 

For the numerical integration of equations ( 5 ) ,  the second order equation (5b) was 
transformed to two coupled equations of first order in time. The complex equation (5a)  
was solved as a system of two coupled equations for the real and imaginary parts of ak. 
We have used a system of 200units, and thus a system of 800 coupled differential 
equations of first order in time had to be solved. This was achieved by a fourth order 
Runge-Kutta algorithm [28] using a time step A t  between 0.2 and 0.5(A?/W)'/2 (Mis the 
average mass of 114 amu). The conservation of energy and norm of 1 q) could be achieved 
within 1% of their initial values. It can be shown that for an exact solution of (5) the 
term Ja,* (ak+' + a k - l )  occurring in the energy expression (6) is a real quantity, as is 
required for the energy. Therefore its imaginary part can be used as a further test of the 
quality of the numerical simulation. With the above-mentioned time-step size, the 
imaginary part of this term was of the order of N m in all simulations performed. 

However, one should keep in mind that while ( 5 )  reproduces the correct qn(t)  for 
J = 0 [23], the phonon energy is incorrect. Also, quantitative results obtained from (5) 
should be interpreted with care [26]. We are interested basically in two problems: First 
of all, in vivo proteins are coupled to a heat bath; and secondly, proteins are aperiodic 
polymers and therefore the use of an average mass M = 114 amu instead of individual 
peptide masses M ,  is an approximation. 

Both problems together have been studied by Halding and Lomdahl [29] using 
classical molecular dyamics and a Lennard-Jones potential between the peptide units 
of an a-helix. This work [29] does not deal with Davydov solitons, but the pulses studied 
bear some similarity with the solitons studied in this paper. However, the work of 
Halding and Lomdahl[29] is an example of the application of a classical thermalisation 
scheme to a classically described lattice. They found that a clearly resolved pulse travels 
through a chain without mass variation for T = 310 K. In the case of mass variation they 
found that with decreasing excitation energy the ability of the pulse to carry energy 
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decreases. It would seem to be interesting to study effects of mass variation in the case 
of the quantum equations of motion ( 5 )  for Davydov solitons also. 

In the case of thermal fluctuations there exists considerable discussion in the litera- 
ture. Lomdahl and Kerr [30] and Lawrence and co-workers [31], using equations ( 5 )  
augmented by energy-providing random forces and dissipation terms, found that at 
300 K the Davydov soliton is destroyed. By contrast, Bolterauer [32] and other authors 
(see references 3-6 in [32]) found solitons to be stable at this temperature. In a recent 
paper Cruzeiro and co-workers [33] derived evolution equations from Davydov’s origi- 
nal theory, using quantum mechanical methods. Their numerical applications also 
predicted the stability of Davydov solitons up to 310 K [33]. 

Bolterauer [32] argues that, in the case of applying a classical model for the heat bath 
as used in [30,31] to a quantised lattice, not even the correct thermal equilibrium will 
be obtained. He shows explicitly that, in case of two coupled oscillators, if one is treated 
classically and the other with the aid of quantum mechanics, the thermal-excitation 
energy in the quantum oscillator will be greatly overestimated when compared to the 
exact quantum-mechanical solution of the problem. Bolterauer [32] discusses the fact 
that, if the soliton is faster than the relaxation of the heat bath, the system can be 
prepared in a phonon state corresponding to the thermal energy NkBT and, after 
excitation of the oscillator system, the heat bath may be switched off. Lomdahl and Kerr 
[30] also studied this case but, as Bolterauer [32] discusses, their classical thermalisation 
scheme should lead to an incorrect phonon state already existing before excitation. 
Bolterauer [32] discusses his model from an analytical point of view only, showing that 
the equations of motion obtained with a phonon state corresponding to T = 0 are the 
same as those derived for T # 0. Note that in [32] a state vector different from ansatz 
(4) is used, but it leads to the same equations of motion as does (4). The difference lies 
in the meaning of the parameters. It would seem to be interesting to perform direct 
numerical simulations using the heat-bath model discussed in [32] instead of the classical 
random-forces-dissipation model used in [30,31]. 

3. Results and discussion 

3.1. Influence of a heat bath 

Since proteins are in vivo in contact with a heat bath of about 300 K, one has to decide 
whether or not the thermal motion of the lattice still permits soliton motion. For a CO 
vibrational energy of N m and a temperature of 300 K,  one obtains a 
Boltzmann factor of 3 x i.e. in thermal equilibrium only three out of 10000 oscil- 
lators are excited. Therefore one can safely assume that the heat bath primarily affects 
the soliton motion only via the lattice, which exhibits a quasi-continuum of vibrational 
states. However, through the coupling the heat bath also acts on the oscillator system. 
Prior to the soliton commencement the sytem is in equilibrium with the heat bath. The 
oscillator system is in its ground state, while the lattice is in thermal motion, which can 
be described as linear combination of its normal modes. With the soliton commencement 
a non-equilibrium state is created. One may now consider two extreme cases [32]: first, 
where the time the soliton needs to travel through the protein is small compared to the 
time the heat bath needs to re-establish equilibrium with the system; or, secondly, where 
the soliton velocity is small compared to the velocity of equilibration. Since the soliton 
velocity is high, we consider the first case to be more realistic. 

= 3.28 x 
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Figure 2. Local lattice energy Ek (in lo-'" N m) as function of site for different times f for the 
model system in contact with a heat bath: (a )  t = 0; (b )  t = 60 ps. 

1.0. 

0 
Figure 3. Evolution of iak12 (see text) as function of site and time for a Davydov soliton in 
contact with a heat bath of 300 K. 

Prior to the soliton commencement ( t  = 0) we introduce an energy NkRT,  where N 
is the number of sites and kB Boltzmann's constant. With the help of a random number 
generator, the energy is distributed on the sites. If the soliton would interact with 
impurities bound to the protein or, for example, with hydrogen bonds to DNA, one could 
also introduce energy loss into the model. If the sites of these bonds are not determined 
exactly, one could, for example, remove a certain number of energy quanta in a random 
way. Next the equations of motion of the decoupled lattice are solved, i.e. the energy is 
distributed on all normal modes. Then at t = 0 the soliton is started. Figure 2(a) shows 
the local lattice energy in N m at t = 0 and figure 2(6) at t = 60 ps. The lattice- 
energy fluctuations associated with the heat bath are larger by roughly three orders of 
magnitude than the local lattice energies associated with the soliton motion. Never- 
theless, as figure 3 (where lakI2 is shown for this case) indicates, the soliton moves 
through the chain completely undisturbed. Therefore, despite the large lattice-energy 
fluctuations due to the heat bath, the non-linear coupling between lattice and oscillators 
is still able to stabilise the soliton. This result agrees with the analytical considerations 
in [32] and also with the completely classical molecular-dynamical study of Halding 
and Lomdahl [29]. However, it disagrees with the conclusion derived from a classical 
thermalisation scheme [30,31] for Davydov solitons, consistent with the arguments of 
Bolterauer [32 ] .  

3.2. Effects of disorder in the sequence of masses 

In the simulations described so far, an average mass of = 114 amu was used for each 
site. However, a real protein is an aperiodic polymer where 200 different amino acids 
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occur with molecular weights between 75 amu (glycine) and 204 amu (tryptophane). 
This corresponds to a variation between 0.66M and 1.79M. However, in our model 
only small elongations perpendicular to the protein backbone occur and therefore the 
influence of the different masses of the amino-acid residues should be much smaller than 
suggested by the interval given above. 

To test the stability of the Davydov soliton against disorder in the sequence of masses 
in a first series of calculations, we have increased only the mass at site 100. All other 
masses have been kept equal to A?. Surprisingly enough, up to very large masses of 100M 
(figure 4(a)) no visible perturbations occur in the soliton motion. While the motion of 
the soliton does not change much, a very small fraction of the sound energy is trapped 
at the impurity and the major fraction is scattered back. As figures 4(b-d) show, these 
fractions do not increase up to MIoo = 1000M. From these results one may conclude that 
an impurity at one site that may also be some other molecule bound to the protein at 
this site (like reactive centres as e.g. heme groups) does not disturb the soliton at all, 
unless it does not influence the coupling constant x significantly. 

In a second series of computer experiments we have introduced a random series of 
masses for the whole chain, ( Y k i i i ,  where the a were determined using a random-number 
generator with equal probability within a prescribed interval. In figure 5 four examples 
are shown; (0.66 s (Yk s 1-79), (0.66 6 (Yk 6 loo), (0.66 s CXk 6 Zoo), and 
(0.66 6 (Yk 6 250). 

The aperiodicity due to the first two smaller intervals for (Yk does not significantly 
affect the soliton motion. However, in the case of the two larger intervals, the vibrational 
energy disperses. The interval over which the soliton still moves unperturbed 
(0.66 s (Yk s 100) is obviously larger than the variation of masses of the natural amino 
acids (0.66 6 (Yk 6 1.79). However, we consider the effective perturbation of this mass 
variation on the soliton to be much smaller than the mass interval suggests. This is due 
to the fact that the amino acids in a protein do not move as free particles but are covalently 
bound in the direction of the main chain that is perpendicular to the direction of their 
movement in the Davydov model. Therefore, one can assume that the effective influence 
of mass variation in the side groups of the amino acids on Davydov solitons should be 
much smaller than the actual numbers for the masses suggest. So we conclude that the 
aperiodicity of natural proteins should not significantly affect the soliton formation and 
motion. 

4. Conclusions 

A heat bath of 300 K coupled to a protein, as is the case in vivo, under the assumption 
that the soliton travels fast when compared with the velocity of thermal equilibration, 
leads to no perturbation of the soliton motion whatsoever. An impurity in the middle of 
the chain, acting only through its mass, was shown to have no considerable influence on 
the soliton up to masses as high as 1000&. For comparison, the largest amino acid has 
only a mass of 1.79A?. The more interesting case of a random sequence of masses has no 
influence in the case of an interval of (0.66M 6 M k  S 100M). For larger deviations 
the vibrational energy disperses rapidly. However, since the effective perturbations 
resulting from the natural mass deviations of amino acids should be smaller than the 
actual masses themselves, as discussed above, the approximation of an average mass 
throughout all sites seems to be justified. 
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